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where e is the vector of all ones, µ controls the trade-off between excess return and absolute risk and tev is
the threshold on TEV. Note that without the absolute risk in the objective, the problem reduces to excess-return
optimization. However, Roll (1992) noted this classical model leads to the unpalatable result that the active
portfolio has systematically higher risk than the benchmark and is not optimal. Therefore, by taking the absolute
risk into account the QCQP model (solved by SOCP) improves the performance of active portfolio.

SOCP solver in the NAG Library was used to solve the above model. Each efficient frontier in the figure was
generated by solving 2000 SOCPs. The whole process took around 4 mins (less than 0.02s per solving).

Various financial models can be significantly enhanced by using the NAG SOCP solver.

minimize
x∈<30

−rTx + µ(b + x)TV (b + x)

subject to eTx = 0,

x + b ≥ 0,

xTV x ≤ tev,

Case study: Portfolio optimization with tracking-error constraints
The following model explores the risk and return relationship of active portfolios subject to tracking-error
volatility (TEV). Let r be the vector of expected returns and V the covariance matrix for asset returns (estimated
from daily data for 30 stocks in DJIA from March 2018 to March 2019). Randomly generating a benchmark
portfolio b, we solve the following optimization:

The NAG SOCP solver is more robust and outperforms both SEDUMI and SDPT3 on all test cases in
DIMACS problem dataset in terms of efficiency and accuracy.

Comparison of time on 12 DIMACS problems that all
three solvers managed to solve successfully.

NAG SEDUMI SDPT3
Problems solved 100% 77.78% 83.33%

Table 1: Statistics on solvers’ status after run, percent-
age of successful solve attempts.

Prob. class No. of prob. Avg. n Avg. m Avg. nc
nb 4 3098.75 321 906
nql 3 86102 49440 12300
qssp 3 99486 49471 24871
sched 8 17712.5 8448.5 1.5

Table 2: DIMACS problem statistics. 18 test prob-
lems in 4 classes. (n number of variables, m number
of linear constraints, nc number of quadratic cone con-
straints.)

Performance of the NAG SOCP solver
We compare our solve times for 18 DIMACS Challenge problems to the well-known solvers SEDUMI and
SDPT3 (default options, accuracy 10−8, single-threaded mode).

• Probability constraint:

Prob(aTx ≤ b) ≥ η,

where a is an independent Gaussian random vector
and η ≥ 0.5.

• Constraints involving power functions, for example:
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•Quadratic/linear fractional problem:

minimize
x∈<n

∑p
i=1
‖Fix+gi‖2
aTi x+bi

,

subject to aTi x + bi > 0, i = 1, . . . , p.

• Convex quadratic constraint:

1

2
xTPx + qTx + r ≤ 0.

• The p-norm constraints:

‖x‖p =

 n∑
i=1

|xi|p
1/p

≤ t,

where p ≥ 1, e.g., absolute value |x| ≤ t, l1-norm
‖x‖1 ≤ t and Euclidean norm ‖x‖2 ≤ t.

•Minimize sum of norm: min
∑n
i=1 ‖xi‖2.

•Minimize maximum of norm: minmax1≤i≤r ‖xi‖2.

SOCP is widely used in quantitative finance due to its flexibility and versatility to handle a large variety of
problems with different kinds of constraints, such as stochastic and robust portfolio optimization. Here is a list of
problems and constraints that can be transformed into equivalent SOCPs. Quantitative finance professionals
could use these elements to build more complex and more realistic models other than linear and quadratic
programming.

Versatility of SOCP and SOCP-representable problems

Feasible region of an SOCP problem with 3 variables.

minimize
x∈<n

cTx

subject to lA ≤ Ax ≤ uA,

lx ≤ x ≤ ux,

x ∈ K,

where A ∈ <m×n, lA, uA ∈ <m, c, lx, ux ∈ <n are
the problem data, and K = Kn1 × · · · × Knr × <nl
where Kni is a second-order cone defined as

Kniq :=

x = (x1, . . . , xni) ∈ <
ni : x21 ≥

ni∑
j=2

x2j, x1 ≥ 0

 .

Second-order cone programming (SOCP) is convex optimization which extends linear programming (LP) with
second-order (Lorentz or the ice cream) cones. It appears in a broad range of applications from engineering,
control theory and quantitative finance to quadratic programming and robust optimization. It has become
an important tool for financial optimization due to its powerful nature. Interior point methods (IPM) are the
most popular approaches to solve SOCP problems due to their theoretical polynomial complexity and practical
performance. The NAG SOCP solver (e04pt) uses an IPM to solve a problem in the standard form:
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